A tubular network associated with the brush-border surface of the Aedes aegypti midgut: implications for pathogen transmission by mosquitoes.

نویسندگان

  • H Zieler
  • C F Garon
  • E R Fischer
  • M Shahabuddin
چکیده

The mosquito Aedes aegypti is capable of transmitting a variety of pathogens to man and to other vertebrates. The midgut of this insect has been well-studied both as the tissue where the first contact occurs between ingested pathogens and the insect host, and as a model system for blood meal digestion in blood-sucking insects. To understand better the nature of the midgut surface encountered by parasites or viruses, we used scanning electron microscopy to identify the most prominent structures and cell morphologies on the luminal midgut surface. The luminal side of the midgut is a complex and layered set of structures. The microvilli that are found on most, but not all, cells are covered by a network of fine strands that we have termed the microvilli-associated network (MN). The MN strands are membranous, as shown by a membrane bilayer visible in cross sections of MN strands at high magnification in transmission electron micrographs. The MN is found in blood-fed as well as unfed mosquitoes and is not affected by chitinase treatment, suggesting that it is not related to the chitinous peritrophic membrane that is formed only after blood feeding. The cells in the midgut epithelium have two distinct morphologies: the predominant cell type is densely covered with microvilli, while cells with fewer microvilli are found interspersed throughout the midgut. We used lectins to probe for the presence of carbohydrates on the midgut surface. A large number of lectins bind to the luminal midgut surface, suggesting that a variety of sugar linkages are present on the structures visualized by electron microscopy. Some of these lectins partially block attachment of malaria ookinetes to the midgut surface in vitro. Thus, the mosquito midgut epithelium, like the lining of mammalian intestines, is complex, composed of a variety of cell types and extensively covered with surface carbohydrate that may play a role in pathogen attachment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of dengue virus in Aedes aegypti and Aedes albopictus spp. of mosquitoes: A study in Khyber Pakhtunkhwa, Pakistan

Dengue is a vector-borne disease caused by dengue virus. According to the recent report of CDC that one-third population of the world are at high risk with Dengue fever. The prevalence of the dengue hemorrhagic fever was found more in tropical and sub-tropical regions of the world. Aedes mosquitoes was reported as the main cause of transmission of dengue virus. So the current study was planned ...

متن کامل

Serratia odorifera mediated enhancement in susceptibility of Aedes aegypti for chikungunya virus

BACKGROUND & OBJECTIVES The susceptibility of the mosquito to the invading pathogen is predominantly dictated by the complex interactions between the mosquito midgut and the surface proteins of the invading pathogen. It is well documented that the midgut microbiota plays an important role in determining the susceptibility of the mosquito to the pathogen. In the present study, we investigated th...

متن کامل

Serratia odorifera a Midgut Inhabitant of Aedes aegypti Mosquito Enhances Its Susceptibility to Dengue-2 Virus

Mosquito midgut plays a crucial role in its vector susceptibility and pathogen interaction. Identification of the sustainable microflora of the midgut environment can therefore help in evaluating its contribution in mosquito-pathogen interaction and in turn vector competence. To understand the bacterial diversity in the midgut of Aedes aegypti mosquitoes, we conducted a screening study of the g...

متن کامل

Co-Infection of Mosquitoes with Chikungunya and Dengue Viruses Reveals Modulation of the Replication of Both Viruses in Midguts and Salivary Glands of Aedes aegypti Mosquitoes

Arthropod-borne virus (arbovirus) infections cause several emerging and resurgent infectious diseases in humans and animals. Chikungunya-affected areas often overlap with dengue-endemic areas. Concurrent dengue virus (DENV) and chikungunya virus (CHIKV) infections have been detected in travelers returning from regions of endemicity. CHIKV and DENV co-infected Aedes albopictus have also been col...

متن کامل

Phylogenetic Analysis of Aedes aegypti Based on Mitochondrial ND4 Gene Sequences in Almadinah, Saudi Arabia

Background: Aedes aegypti is the main vector of the yellow fever and dengue virus. This mosquito has become the major indirect cause of morbidity and mortality of the human worldwide. Dengue virus activity has been reported recently in the western areas of Saudi Arabia. There is no vaccine for dengue virus until now, and the control of the disease depends on the control of the vector. Objectiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 203 Pt 10  شماره 

صفحات  -

تاریخ انتشار 2000